谷歌AlphaFold 3预测生命分子,登Nature,免费开放,加速科研亿年!

2024-05-09
引入扩散模型生成预测结果,预测准确率提高50%。

谷歌AlphaFold 3预测生命分子,登Nature,免费开放,加速科研亿年! (https://ic.work/) AI 人工智能 第1张

免费提供分子预测服务,开放2亿蛋白质结构数据库。

智东西5月9日报道,昨日晚间,谷歌推出革命性的模型AlphaFold 3,登上国际顶刊《自然》(Nature)杂志。

AlphaFold 3能够预测所有生命分子的结构和相互作用。在预测蛋白质与其他分子的相互作用上,AlphaFold 3相比现有方法至少提高了50%的准确率,针对一部分相互作用类别甚至提高了1倍

这使得AlphaFold 3成为首个超越基于真实生物分子结构预测工具的AI系统

谷歌AlphaFold 3预测生命分子,登Nature,免费开放,加速科研亿年! (https://ic.work/) AI 人工智能 第2张

值得一提的是,AlphaFold3采用了扩散模型(Diffusion model),直接生成每个原子的3D坐标。这一机器学习网络也被Midjourney等图像生成式AI所使用。“这是一个巨大的转变。”负责AlphaFold开发的约翰·江珀(John Jumper)说。

如下图所示,AlphaFold 3能对感冒病毒刺突蛋白(蓝色)与抗体(绿松石色)和单糖(黄色)相互作用时的结构预测,与真实结构准确匹配(灰色的),这一研究有助于更好地了解包括COVID-19在内的冠状病毒,从而提高改进治疗的可能性。

谷歌AlphaFold 3预测生命分子,登Nature,免费开放,加速科研亿年! (https://ic.work/) AI 人工智能 第3张

伦敦弗朗西斯·克里克研究所的生物化学家弗兰克·乌尔曼(Frank Uhlmann)评价AlphaFold3说:“这简直是一场革命,这将推动结构生物学研究的普及化。”

谷歌还新推出了一种便捷研究工具AlphaFold Server,支持科学家免费调用AlphaFold 3大部分功能,但目前仅限于进行非商业用途。

为了发挥AlphaFold 3在药物设计方面的潜力,谷歌旗下的AI药物研发公司Isomorphic Labs已经与制药公司展开合作,通过药物设计为患者带来改新疗法。

AlphaFold 3是基于其2020年推出的AlphaFold 2研发而来。至今,全球已有数百万研究人员使用AlphaFold 2在疟疾疫苗、癌症治疗和酶设计等领域取得了重要发现,AlphaFold已被引用超过2万次

AlphaFold 3不仅限于蛋白质,将探索更广泛的生物分子。这一飞跃可能影响从开发生物可再生材料和更具弹性的作物,到加速药物设计和基因组学研究,带来生物科学研究的变革。

谷歌AlphaFold 3预测生命分子,登Nature,免费开放,加速科研亿年! (https://ic.work/) AI 人工智能 第4张

论文地址:https://www.nature.com/articles/s41586-024-07487-w

AlphaFold Server地址:https://golgi.sandbox.google.com/about

01.引入扩散模型生成预测结果揭示生命分子结构

当你给AlphaFold 3一个分子的输入列表时,它会生成这些分子的联合3D结构,告诉你它们是如何组合在一起的。

它不仅能模拟像蛋白质、DNA和RNA这样的大生物分子,还能模拟小分子(也叫配体),这类分子包括许多药物。更厉害的是,AlphaFold 3还能模拟这些分子的化学修饰,这些修饰控制着细胞的健康功能,一旦受损,就会导致疾病。

AlphaFold 3之所以如此强大,得益于其下一代架构和训练方式,现在它已经可以模拟所有生命分子了。这个模型的核心是谷歌Evoformer模块的改进版,这是一个深度学习架构,让AlphaFold 2有了惊人的性能。

在处理输入后,AlphaFold 3会使用扩散网络来处理预测结果,这种方式跟AI图像生成器中的网络类似。扩散过程从原子云开始,经过多个步骤逐渐汇聚成最终的、准确的分子结构。

谷歌AlphaFold 3预测生命分子,登Nature,免费开放,加速科研亿年! (https://ic.work/) AI 人工智能 第5张

作为一个能够整体计算整个分子复合物的单一模型,AlphaFold 3在预测分子相互作用方面的准确性超过了所有现有系统

下图为7R6R-DNA结合蛋白,这是AlphaFold 3对分子复合物的预测,其特征是蛋白质(蓝色)与DNA双螺旋(粉色)结合,与通过艰苦实验发现的真实分子结构(灰色)近乎完美匹配。

谷歌AlphaFold 3预测生命分子,登Nature,免费开放,加速科研亿年! (https://ic.work/) AI 人工智能 第6张

02.助力领先药物发现预测准确率提高50%

AlphaFold 3具备强大的药物设计能力,可以预测药物中常用的分子,如配体和抗体。这些分子与蛋白质结合,能改变它们在人类健康和疾病中的相互作用方式。

在预测药物相互作用方面,相比PoseBusters基准测试中最好的传统方法,AlphaFold 3的准确率提高了50%,而且无需输入任何结构信息。这使得AlphaFold 3成为首个超越基于真实生物分子结构预测工具的AI系统

伦敦弗朗西斯·克里克研究所的生物化学家弗兰克·乌尔曼(Frank Uhlmann)评价AlphaFold3:“这简直是一场革命,这将推动结构生物学研究的普及化。”

乌尔曼的团队使用AlphaFold3来预测参与复制基因组的DNA相互作用蛋白的结构,他表示这比他在研究所里使用的AlphaFold2版本更为简单和快捷。“你只需上传数据,10分钟后就能得到结构。

自从AlphaFold2在2020年发布以来,被许多科学家认为对生物领域带来了革命性影响。AlphaFold数据库免费提供,AlphaFold2的代码也是开放的,不少研究者利用这一工具预测了多种蛋白质之间的相互作用。

但负责AlphaFold开发的约翰·江珀(John Jumper)认为,AlphaFold无法预测蛋白质生态系统中其他重要方面的现状,这有些遗憾。比如,蛋白质的修饰(如添加磷酸盐分子)能让细胞对外部信号(如感染)做出反应,并触发一系列后果。同时,与DNA、RNA和其他化学物质的相互作用对于许多蛋白质的功能也至关重要。

江珀认为,理想的工具应该能够预测蛋白质及其他分子的整体结构,AlphaFold 3应运而生。

Isomorphic Labs正将AlphaFold 3与一系列内部AI模型相结合,聚焦内部项目以及与制药合作伙伴共同进行药物设计。通过AlphaFold 3,Isomorphic Labs正在加速并提高药物设计的成功率,攻克此前无法治愈的疾病。

03.免费提供分子预测服务开放2亿蛋白质结构数据库

谷歌DeepMind新推出的了AlphaFold Server,这是一个预测蛋白质如何与细胞中其他分子相互作用的精准工具。同时这是一个免费平台,全球科学家均可用于非商业研究。

生物学家只需简单几步操作,就能利用AlphaFold 3的强大功能模拟由蛋白质、DNA、RNA以及多种配体、离子和化学修饰组成的结构。

AlphaFold Server中包括谷歌免费提供的包含2亿个蛋白质结构的数据库,它将助力科学家提出新假设并在实验室验证,大大加快工作流程。无论研究人员是否具备计算资源或机器学习知识,这一平台都能轻松生成预测。

过去,实验性蛋白质结构预测可能需要耗费一个博士研究生的全部时间,并花费数十万美元。而谷歌之前的模型AlphaFold 2已经预测了数亿个结构,按照当前实验结构生物学的速度,这需要花费数亿年的研究时间。

文章推荐

相关推荐