高性能电流传感器赋能电动化在现实场景中的应用

2023-07-09

光纤电流传感器在电力系统中的应用案例有哪些具体案例,如1986年TVA在Chkamauga水电站上安装电流互感器

国外在六十年代就已开始清前对光纤电流传感器进行研究。美国、日本及西欧的一些国家的研究机构和一些电气仪器公司都在此领域作了大量的工作,如美国国家标准与技术研究所、贝尔实验室、日本的中央答世清研究所、NEC公司及东芝、松下等公司、瑞典皇家技术学院等,到八十年代初期,光纤电流传感器开始进入工业试用阶段。 1986 年美国的田纳西州返芹流域电力管理局(TVA)在其所属的Chkamauga水坝电力编组站安装了第一台单相高电压光学计量用的电流互感器,可靠地运行两年多后拆除。电站的常规电压互感器为OCT 提供电压。在一年的千瓦小时的计量中,与参照系统比仅变化0.08%。按照各种预定的条件如负载、温度、湿度以及电磁干拢等条件下完成了其应负的任务。在变电站的环境中,展现出稳定、准确的性能。  国内应用法拉第效应的光学电流传感器处于探索阶段,在“六五”期间,以1982 年9月在上海召开的“激光工业应用座谈会”为起步,先后有多家单位进行这方面的研究,中电八所、上海硅酸盐所、上海冶金所、华北电力局、北京化工学院、清华大学、华中理工大学等都取得一定成果。
日前,一种新型的光纤电流传感器——由湖北迅迪科技有限公司自主研发完成的“XD GDL-1光纤电流传感系统”,通过了湖北省科技厅主持的科技成果鉴定。出席鉴定会的专家认为,该项目取得了具有自主知识产权的重要科技成果,总体技术处于国际先进水平,项目产品填补了国内空白,对我国冶金、化工等电解行业的大电流直流测量具有重大意义。最近一年多来,该项目产品先后在河南万基铝业、河南神火铝业、江西铜业和中盐集团株洲化工等国内典型企业,进行了不同环境、不同量程(最小量程40kA,最大400kA)的挂线试验运行,经现场测试考核,性能稳定可靠,各项技术指标均达到设计要求,部分指标和功能优于国外同类产品指标。

求再论霍尔电流电压

再论霍尔电流电压传感器/变送器模块的性能及应用
1 引言 近年来,新一代功率半导体器件大量进入电女故衣烟力电子、交流变频调速、逆变装置及开关电源等领域。原有的电流、电压检测元件已不适应中高频、高di/dt电流波形的传递和检汉罪村行诉直小问测。霍尔电流、电压传感器/变送器模块是近十几年发展起来的测量控制电流、电压的新一代工业用电量传感器,是一种新型的高性能电气检测元件。 霍尔电流、电压传感器/变送器由于具有精度高、线性好、频带宽、响应快、过载能力强和不损失被真并木料总雷哥测电路能量等诸多优点,得量几末投末决待因而被广泛应用于变频调换量材交率包零款兰速装置、逆变装置、UPS电源、逆变焊机、变电站、电解电转口斗室镀、数控机床、微机监测系统、电网监控系统和需要隔离检测大电流、电压的各个领域中。在电力电子产品中,于宁对大电流、电压进行精确的检测和控制也是产品安全可靠运行的根本保证。
2 霍尔传感器/变送器的性能特点 霍尔电流、电压传感器/变送器模块具有优越的电性能,是一种先进的、能隔离主电路回路和电着众坏销城按挥候以代子控制电路的电检测元件。它综合了互感器和分流器的所有优点,同时又克服了互感器和分流器的不足(喜杆认较步防位长普杆互感器只适用于50Hz工频测量;分流器无法进行隔离测量)。利用同一只霍尔电流电压传感器要慢育联厚印宜/变送器模块检测元件既可资据德以检测交流也可以检测直流,甚至可以检测瞬态峰值,因而是替代互感器和分流器的新一代产品。霍尔电流、电压传感器/变送器具有如下特点: ●可测量任意波形的电压和电流。霍尔电压、电流传感器/变送器模块可以测量任意波形的客安展流写非破度福电流和电压参量,如直流、交流和脉冲波形等。也可以对立放哪判思活感跟别温煤瞬态峰值参数进行测量,其副边电路可以忠实地反映原边电流的波形。这一点普通互感器无法与其相比,因为普通的互感器一般只适用于50Hz的正弦波; ●精度高。一般的霍尔电流电压传感器/变送器模总乎按间专依买足块在工作区域内的精度优于1%,该精度适合于任何波形的测量,而普通互感器精度一般为3%~5%,且只适合于50Hz的正弦波形; ●线性度优于0.5%; ●动态性能好。一般霍尔传感器/变送器模块的动态响应时间小于7μs,跟踪速度di/dt高于50A/μs; 霍尔电流电压传感器/变送器模块以其优异的动态性星模始语集能为提高现代控制系统的性能提供了关键的基础(无感元件)。一般普通互感器的动态响应时间为10~20μs,这显然已不适应工业控制系统发展的需要(感性某级四良类乙祖眼占提元件); ●工作频带宽。可在0~20kHz频率范围内很决金置好影样胜推玉功好地工作; ●过载能力强,测量范围大(0~±10000A) ●可靠性高,平均无故障工作大于5×10000伯即司销守从小时; ●尺寸小,重量轻,易于安装且不会给系统带来任何损失。
3 霍尔传感器/变送器的工作原理 霍尔电流、电压传感器是根据霍尔原理制成的。它有两种工作方式,即磁平衡式和直放式。霍尔电流、电压传感器一般由原边电路、聚磁环、霍尔器件、(次级线圈)和放大电路等组成。 3.1 直放式电流传感器(开环式HDC系列) 众所周知,当电流通过一根长导线时,在导线周围将产生一磁场,这一磁场的大小与流过导线的电流成正比,它可以通过磁芯聚集感应到霍尔器件上并使其有一信号输出。这一信号经信号放大器放大后直接输出,一般的额定输出标定为4V。 3.2 磁平衡式电流传感器(闭环式HNC系列) 磁平衡式电流传感器也称补偿式传感器,即主回路被测电流Ip在聚磁环处所产生的磁场通过一个次级线圈电流所产生的磁场进行补偿,从而使霍尔器件处于检测零磁通的工作状态。 磁平衡式电流传感器的具体工作过程为:当主回路有一电流通过时,在导线上产生的磁场被聚磁环聚集并感应到霍尔器件上,所产生的信号输出用于驱动相应的功率管并使其导通,从而获得一个补偿电流Is。这一电流再通过多匝绕组产生磁场,该磁场与被测电流产生的磁场正好相反,因而补偿了原来的磁场,使霍尔器件的输出逐渐减小。当与Ip与匝数相乘所产生的磁场相等时,Is不再增加,这时的霍尔器件起指示零磁通的作用,此时可以通过Is来跟踪Ip。当Ip变化时,平衡受到破坏,霍尔器件有信号输出,即重复上述过程,最后重新达到平衡。被测电流的任何变化都会破坏这一平衡。一旦磁场失去平衡,霍尔器件就有信号输出。经功率放大后,立即就有相应的电流流过次级绕组以对失衡的磁场进行补偿。从磁场失衡到再次平衡,所需的时间理论上不到1μs,这是一个动态平衡的过程。 3.3 霍尔电压传感器(闭环式HNV系列) 霍尔电压传感器的工作原理与闭环式电流传感器相似,也是以磁平衡方式工作的。 3.4 交流/直流变换器(HY系列) 交流/直流变换器与电流或电压传感器相配合使用所组成的模块可以把0~1V的交、直流信号转换为4~20mA(或0~20mA)、0~5V的标准直流信号(可分隔离和非隔离两种)。 该变送器也可以与压力、温度、流量等传感器配合使用,并将它们的输出转换为标准直流信号以形成不同的变送模式供各种系统使用。
4 霍尔传感器/变送器的连接方式 电流、电压传感器只需外接正负直流电源,被测电流母线一般从传感器中穿过或接于原边端子,然后在副边端再作一些简单的连接即可完成主控制电路的隔离检测,电路设计非常简单。 若与变送器配合使用,经A/D转换后,可方便地与计算机或各种仪表接口,并可以进行长距离传输。 4.1 磁平衡(补偿)式接线法 磁平衡(补偿)式电流、电压传感器/变换器有HNC、HNV两系列:其输出信号多为电流。(若需要电压输出方式,可在M端与电流地之间根据所需电压大小外接取样电阻或将取样电压进行必要的信号放大。) 该类常规传感器的3个接线端子分别为:正电源输入接“+”端,负电源输入接“-”端,“M”端为信号输出端。 4.2 直放式接线法 直放式电流传感器有HDC系列。它的输出信号为电压方式,在额定工作条件下,其标准输出信号为±4V,用户可根据需要选取。传感器上有零点和增益电位器,用户一般不需再作调整。若用户有特殊要求,可向厂方订做。直放式电流传感器的接线方法会因具体产品的不同而有所不同,但多为4个接线端子分别为:正电源输入接“+”端,负电源输入接“-”端,“M”端为信号输出端,“0”端为电源地 。 4.3 电压传感器的接线法 电压传感器一般有5个接线端子,其中“V +”、“V-”为原边端子,分别接被测电压输入端的正极和负极。另外3个端子为副边端子,“+”端接+15V电源,“-”端接-15V电源,“M”端为信号输出端。 根据所测电压大小的不同,用户可根据需要在被测电压一端串接一个限流电阻R后再接到传感器的原边,串接电阻R的大小由下式决定: R=Vp/Iin-Rin 式中R为串联电阻,Vp为被测电压,Iin为额定输入电流,Rin为传感器的原边内阻。 串接电阻功率大小由W=Vp·Iin确定。 4.4 变换器(变送器)接线法 变换器有HY1~HY6等六个系列,它们与传感器配合使用可形成不同的变送形式。 电流传感器与变换器相接可组成电流变换器;电压传感器与变换器相接可组成电压变换器。变换器也可以单独使用。如果将其它传感器(如压力、温度等)的输出信号接于变换器,则可将普通的传感器输出信号变换放大或变换成0~20mA或4~20mA的标准信号,以便于长距离传输或与计算机接口。(根据用户需要可分隔离和非隔离两种)
5 霍尔电流电压传感器/变送器的应用 5.1 电压型逆奕器保护电路 在电压型逆变器中,如果换相换败,则很容易使一相中上下两个桥臂中的半导体器件因过电流而损坏,如上下桥臂采用功率模块时,要求短路电流保护电路能在短路检出后10μs内切断门驱动电路,同时还需考虑电路的传输时间。所以,这种逆变器必须有快速过电流保护装置,可以用霍尔电流传感器检测每个桥臂中的电流。若因换相失败造成了上下桥臂同时导电,则相应的两处传感器可以同时检出电流信号,该信号与基准电压比较后转换成方波。这样,可通过门电路控制封锁所有的逆变触发脉冲,从而达到切断门驱动电路的目的。电压型逆变器保护电路优点是,只要上下桥臂同时存在的电流超过基准,保护电路立即动作。因为保护早,功率模块不会经受过大电流的冲击。其次,保护动作速度快。因为霍尔电流传感器是无感元件,在功率模块判断时,它不会产生过电压。因此,可简化设计过程,提高效率。 5.2 用于变频调速装置 利用霍尔电流传感器还可以检测变频调速系统的主回路信号。使用时,第一个电流传感器模块接入整流滤波后的直流回路。当检测到主回路中出现异常尖峰或者有效值超出标准时,电路将迅速切断逆变触发电路的触发脉冲,以保护逆变和整流模块。另外3个传感器接入逆变器的输出回路,用来检测随频率变化的交流电流。这样可以更好地控制转矩,也可提供防止电机过载所需的信号。 5.3 电流传感器在逆变焊机中的应用 霍尔电流传感器在直流检测中同样具有电隔离作用,在直流输出的电力电子设备中,可以利用霍尔电流传感器测得与主电路隔离的直流测量信号,也可以通过电子控制电路对直流测过流、短路保护和显示控制,还可用于电流反馈和稳流调节。
6 霍尔传感器/变送器的命名方法 霍尔电流、电压传感器/变送器模块的命名一般由3部分组成,下面以南京中旭的产品为例说明其命名方法,具体说明如下: 如: HDC50LB —主称+原理+类别+电流+结构
(1)主称:H表示模块为霍尔效应
(2)原理:用字母表示 D-直放开环原理 N-零磁通闭环原理
(3)类别 C-电流传感器系列 V-电压传感器系列 Y-变换器系列
(4)额定电流:用数字表示 50-额定电流为50A
(5)结构形式:用字母表示 LB-外壳是LB型外壳
7 使用注意事项 使用霍尔传感器/变送器模块时,应注意以下几点: (1)使用传感器时,应先接通副边电源,再接通原边电流或电压。 (2)测量电流时,最好用单根导线充满模块孔径,以获得最佳动态特性和灵敏度。 (3)测量电压时,被测电压应先串接限流电阻,在得到传感器所规定的原边电流后,再接入电压传感器原边端子。 (4)模块的最佳精度是在额定值下测得的。当被测电流低于额定值时,为了获得较好的精度,原边可以使用多匝,即:Ip*Np=额定安匝数

霍尔电流传感器的应用领域,及简单的应用描述?

霍尔电流传感器的应用
一、引 言
伴随着城市人口和建设规模的扩大,各种用电设备的增多,用电量越来越大,城市的供电设备经常超负荷运转,用电环境变得越来越恶劣,对电源的“考验”越来越严重。据统计,每天用电设备都要遭受120次左右各种电源问题的侵扰,电子设备故障的60%来自电源。因此,电源问题的重要性日益凸显出来。原先作为配角,资金投入较少的电源越来越受到厂商和研究人员的重视,电源技术遂发展成为一门崭新的技术。
而今,小小的电源设备已经融合了越来越多的新技术。例如开关电源、硬开关、软开关、参数稳压、线性反馈稳压、磁放大器技术、数控调压、PWM、SPWM、电磁兼容等等。实际需求直接推动电源技术不断发展和进步,为了自动检测和显示电流,并在过流、过压等危害情况发生时具有自动保护功能和更高级的智能控制,具有传感检测、传感采样、传感保护的电源技术渐成趋势,检测电流或电压的传感器,即霍尔电流传感器便应运而生并在我国开始受到广大电源设计者的青睐。
二、电流传感器的工作原理
霍尔电流传感器可以测量各种类型的电流,从直流电到几十千赫兹的交流电,其所依据的工作原理主要是霍尔效应原理。
1、电流传感器的输出信号
当原边导线经过电流传感器时,原边电流IP会产生磁力线,原边磁力线集中在磁芯气隙周围,内置在磁芯气隙中的霍尔电片可产生和原边磁力线成正比的,大小仅为几毫伏的感应电压,通过后续电子电路可把这个微小的信号转变成副边电流IS,并存在以下关系式: IS* NS= IP*NP
其中, IS—副边电流;
IP—原边电流;
NP—原边线圈匝数;
NS—副边线圈匝数;
NP / NS—匝数比,一般取NP =1。
电流传感器的输出信号是副边电流IS,它与输入信号(原边电流IP)成正比,IS一般很小,只有10~400mA。如果输出电流经过测量电阻RM,则可以得到一个与原边电流成正比的大小为几伏的电压输出信号。
2、电流传感器供电电压VA
VA指电流传感器的供电电压,它必须在传感器所规定的范围内。超过此范围,传感器不能正常工作或可靠性降低。另外,传感器的供电电压VA又分为正极供电电压VA+和负极供电电压VA-。要注意单相供电的传感器,其供电电压VAmin是双相供电电压VAmin的2倍,所以其测量范围要高于双相供电的传感器。
3、测量范围Ipmax
测量范围指电流传感器可测量的最大电流值,测量范围一般高于标准额定值IPN。
三、电流传感器主要特性参数
1、标准额定值IPN和额定输出电流ISN
IPN指电流传感器所能测试的标准额定值,用有效值表示(A.r.m.s),IPN的大小与传感器产品的型号有关。 ISN指电流传感器额定输出电流,一般为10~400mA,当然根据某些型号具体可能会有所不同。
2、 偏移电流ISO
偏移电流也叫残余电流或剩余电流,它主要是由霍尔元件或电子电路中运算放大器工作状态不稳造成的。电流传感器在生产时,在25℃,IP=0时的情况下,偏移电流已调至最小,但传感器在离开生产线时,都会产生一定大小的偏移电流。产品技术文档中提到的精度已考虑了偏移电流增加的影响。
3、 线性度
线性度决定了传感器输出信号(副边电流IS)与输入信号(原边电流IP)在测量范围内成正比的程度,南京中旭电子科技有限公司的电流传感器线性度要优于0.5%。
4、 温度漂移
偏移电流ISO是在25℃时计算出来的,当霍尔电极周边环境温度变化时,ISO会产生变化。因此,考虑偏移电流ISO的最大变化是很重要的,其中,IOT是指电流传感器性能表中的温度漂移值。
5、 过载
电流传感器的过载能力是指发生电流过载时,在测量范围之外,原边电流仍会增加,而且过载电流的持续时间可能很短,而过载值有可能超过传感器的允许值,过载电流值传感器一般测量不出来,但不会对传感器造成损坏。
6、 精度
霍尔效应传感器的精度取决于标准额定电流IPN。在+25℃时,传感器测量精度与原边电流有一定影响,同时评定传感器精度时还必须考虑偏移电流、线性度、温度漂移的影响。
四、传感器型号、结构和安装方法
霍尔效应传感器产品标签一般由“传感器产品型号”和“生产日期”两部分构成。“传感器产品型号”用于标明传感器的型号、额定测量值、工作电源及接线指示,“传感器生产日期”则是由8位数字构成,表明传感器的生产年月份、批次(一月中的第几批产品)。
霍尔效应传感器产品很多,每种传感器的外形结构、尺寸大小等都有所不同。下面介绍几种典型的外形结构及安装接线方法。
1、 HNC-025A电流传感器
HNC-025A电流传感器是南京中旭电子科技有限公司中一种量程很小的传感器,所能测量的额定电流为5、6、8、12、25A,原边管脚的不同接法可确定额定测量电流为多少,参见说明书。
2、带线电流传感器
如常规电流传感器一样,一般传感器都有正极(+)、负极(-)、测量端(M)及地(0)四个管脚,但带线电流传感器则没有此四个管脚,而是有红、黑、黄、绿四根引线,分别对应于正极、负极、测量端及大地。同时在大多传感器中有一内孔,测量原边电流时要将导线穿过该内孔。孔径大小与产品型号、测量电流大小有关系。
不管是什么型号的电流传感器,安装时管脚的接线应根据说明书所注情况进行相应连线。
(1)在测量交流电时,必须强制使用双极性供电电源。即传感器的正极(+)接供电电源“+VA”端,负极接电源的“-VA”端,这种接法叫双极性供电电源。同时测量端(M)通过电阻接电源“0V”端(单指零磁通式)。
(2)在测量直流电流时,可使用单极性或单相供电电源,即将正极或负极与“0V”端短接,从而形成只有一个电极相接的情况。
另外,安装时必须全面考虑产品的用途、型号、量程范围、安装环境等。比如传感器应尽量安装在利于散热的场合。
五、提高测量精度的方法
除了安装接线、即时标定校准、注意传感器的工作环境外,通过下述方法还可以提高测量精度:
1、原边导线应放置于传感器内孔中心,尽可能不要放偏;
2、原边导线尽可能完全放满传感器内孔,不要留有空隙;
3、需要测量的电流应接近于传感器的标准额定值IPN,不要相差太大。如条件所限,手头仅有一个额定值很高的传感器,而欲测量的电流值又低于额定值很多,为了提高测量精度,可以把原边导线多绕几圈,使之接近额定值。例如当用额定值100A的传感器去测量10A的电流时,为提高精度可将原边导线在传感器的内孔中心绕十圈(一般情况,NP=1;在内孔中绕一圈,NP=2;……;绕九圈,NP=10,则NP×10A=100A与传感器的额定值相等,从而可提高精度);
4、当欲测量的电流值为IPN/10的整数倍时,在25℃仍然可以有较高的精度。
六、传感器的抗干扰性
霍尔电流传感器,利用了原边导线的电磁场原理。因此下列因素直接影响传感器是否受外部电磁场干扰:
(1) 传感器附近的外部电流大小及电流频率是否变化;
(2) 外部导线与传感器的距离、外部导线的形状、位置和传感器内霍尔电极的位置;
(3) 安装传感器所使用的材料有无磁性;
(4) 所使用的电流传感器是否屏蔽;
为了尽量减小外部电磁场的干扰,最好按上述要求安装传感器。
七、传感器标定
1、偏移电流ISO
偏移电流必须在IP=0、环境温度T≈25℃的条件下进行校准,(双极性供电)接线,且测量电压VM必须满足: VM≦RM×ISO
2、精度
在IP=IPN(AC or DC)、环境温度T≈25℃、传感器双极性供电、RM为实际测量电阻的条件下进行测量。
3、保护性测试
上海自动化仪表集团的传感器在测量电路短路、测量电路开路、供电电源开路、原边电流过载、电源意外倒置的条件下都可受到保护。对上述各项测试举例如下:
(1)测量电路短路
此项测试必须在IP=IPN、环境温度T≈25℃、传感器双向供电、RM为实际应用中的电阻条件下进行,输出与地接一开关,开关应在一分钟之内合上和打开。
(2)测量电路开路
此项测试条件为IP=IPN、环境温度T≈25℃、传感器双向供电、RM是实际应用中的电阻条件下进行,输出与电阻接一开关,开关S应在一分钟之内完成闭合/打开切换动作。
(3)电源意外倒置测试
为防止电源意外倒置而使传感器损坏,在电路中专门加装了保护二极管,此项测试可使用万用表测试二极管两端,测试应在IP=0、环境温度T≈25℃、传感器不供电、不连接测量电阻的条件下进行。可使用以下两种方法测试:
第一种:万用表红表笔端接传感器“M”端,万用表黑表笔端接传感器“+”端;
第二种:万用表红表笔接传感器负极,万用表黑表笔接传感器M端;
在测试中,如万用表鸣笛,说明二极管已损坏。
八、传感器应用计算
电流传感器的主要计算公式如下:
NP*IP=NS*IS 计算原边或副边电流
VM=RM*I 计算测量电压
VS=RS*IS 计算副边电压
VA=e+VS+VM 计算供电电压
其中,e是二极管内部和晶体管输出的压降,不同型号的传感器有不同的e值。这里我们仅以HNC-300LT为例,这种传感器的匝数比NP/NS=1/2000、标准额定电流值IPN=300A rms 、供电电压VA的范围为±12V~±15V(±5%)、副边电阻RS=30Ω ,在双极性(±VA)供电,其传感器测量量程>100A且无防止供电电源意外倒置的保护二极管的情况下,e=1V。在上述条件下:
(1)给定供电电压VA,计算测量电压VM和测量电阻RM:
假设:供电电压VA=±15V
根据上述公式得:
测量电压VM=9.5V;
测量电阻RM=VM/IS =63.33Ω;
副边电流IS=0.15A。
所以当我们选用63.33Ω的测量电阻时,在传感器满额度测量时,其输出电流信号为0.15A ,测量电压为9.5V。
(2)给定供电电压和测量电阻,计算欲测量的峰值电流;
假设:供电电压VA=±15V,测量电阻RM=12Ω,
则:VM+VS=(RM+RS)×IS =VA-e=14V
而:RM+RS=12W+30W=42W,
则最大输出副边电流:ISmax= 0.333A
原边峰值电流:IPmax=ISmax(NS/NP)=666A
这说明,在上述条件下,传感器所能测量的最大电流即原边峰值电流为666A。如果原边电流大于此值,传感器虽测量不出来,但传感器不会被损坏。
(3)测量电阻(负载电阻)能影响传感器的测量范围。
测量电阻对传感器测量范围也存在影响,所以我们需要精心选择测量电阻。
九、结束语
在城市用电设备增多,农村供电设备老化欠修的情况下,城乡各地经常会出现电压不稳、电路短路、过流等现象,结果造成人民生活不便和仪器损毁。在电源技术中使用传感检测功能可以使电源设备更加小型化、智能化和安全化。
电源技术发展到今天,已融合了电子、功率集成、自动控制、材料、传感、计算机、电磁兼容、热工等诸多技术领域的精华,我们有理由相信,在21世纪的电源技术中,传感器也将发挥着至关重要的作用,所以对电流传感器的应用和设计开发,传感器工作者应该给予足够重视。

文章推荐

相关推荐