CMOS图像传感器(CMOS Image Sensor, CIS) 是一种可以将通过镜头捕获的光的颜色和亮度转换为电子信号,并将其传输至处理器的传感器。因此,图像传感器充当的是智能手机或平板电脑等移动设备“眼睛”的角色。近年来,随着虚拟现实(VR)、增强现实(AR) 、自动驾驶的兴起,CIS技术成为工业4.0的一项关键技术。人们预计,CIS技术将不仅可以作为设备的“眼睛”,还将在功能上有更进一步的发展。
1.前照式(FSI)技术及其局限性
早期的CIS产品像素采用前照式(FSI)结构,这种结构将光学结构置于基于CMOS1)工艺的电路上。这项技术适用于像素尺寸为1.12μm及以上的大多数CIS解决方案,被广泛用于移动设备、闭路电视(CCTV)、行车记录仪、数码单反相机、车用传感器等产品。
1) 互补金属氧化物半导体(Complementary Metal Oxide Silicon, CMOS):由成对的N沟道和P沟道MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor, 低压金属氧化物半导体场效应管) 组成的互补逻辑电路。CMOS器件的功耗极低,被应用于DRAM产品和CPU中,因为虽然这类器件搭载的处理器较为复杂,但却能够进行大规模集成。
图1. 前照式(FSI)结构和单位像素示意图
一款高性能的图像传感器即使在弱光条件下,也应能够呈现出明亮清晰的图像,而要实现这一效果,需要提高像素的量子效率(QE)2)。因此,像素下层电路的金属布线设计应以FSI结构为基础,以尽可能避免光干扰。 2) 量子效率(QE):用于衡量成像设备将入射光子转换为电子的有效性的指标。如果一款传感器的量子效率为100%且暴露在100个光子下,则可以转换为100个电子信号。
图2. 量子效率(QE)方程式和前照式(FSI)结构图
然而,通常情况下,当连续的光线穿过光圈或物体周围时,就会发生衍射现象3)。就光圈而言,随着光圈孔径尺寸的减少,更多的光会随着衍射量的增加而扩散。
3) 衍射现象:声波和光波等在穿过障碍物或光圈时偏离直线传播的现象。从光的角度来看,当障碍物或光圈的尺寸等于或小于所通过光波的波长时,就会发生衍射现象。
同样,外部光达到单个像素时,衍射现象也无法避免。就FSI结构而言,因为受到下层电路中金属布线层的影响,这种结构更容易受到衍射的影响。即使FSI像素尺寸减少,被金属覆盖的区域也保持不变。因此,光通过的区域变得更小,衍射现象增强,导致图像中的颜色混合在一起。
图3. 光衍射和像素大小的关系 然而,控制像素的衍射也并非不可能。为了改善单个区域的衍射,可以根据衍射计算公式来缩短微透镜到硅(Si)的距离。为此,人们提出了一种背照式(BSI)工艺,通过翻转晶圆来利用其背面,以此消除金属干扰。
2.基于BSI的像素技术的出现
2011年,苹果iPhone 4手机问世,其配备了当时首个应用BSI技术的CIS产品。苹果公司当时声称BSI技术与FSI技术相比可以捕获更大的进光量,因此可以再现更高质量的图像。
苹果公司以及当今整个行业所使用的BSI流程如下图所示。就BSI技术而言,首先在晶圆的一侧制作所有电路部分,然后将晶圆翻转倒置,以便创建可以在背面收集光线的光学结构。这样可以消除FSI中金属线路造成的干扰,在同一大小像素的条件下光线通过的空间更大,从而可提高量子效率。
图4. 背照式(BSI)工艺流程图
图5. 不同结构下微透镜和光电二极管(PD)之间的距离比较
借助BSI技术,使1.12μm及以下像素尺寸的应用成为可能,并为1600万像素及以上的高分辨率产品开辟出了市场。不同于会受到布线干扰的FSI结构,基于BSI的光学工艺有着更高的自由度。得益于此,背侧深沟槽隔离(BDTI)、W型栅格(W Grid)和空气栅格(Air Grid)等在内的各种光学像素结构被开发出来,以提高产品的量子效率。
背侧深沟槽隔离(BDTI)工艺 虽然采用克服光衍射问题的BSI结构可以提高量子效率,但仍需要采用额外的像素分割结构,以顺应智能手机不断缩小的像素尺寸和不断降低的摄像头F值4)。在这方面,背侧深沟槽隔离(BDTI)结构是最具代表性的例子,这种结构可以在光线沿CIS芯片外侧斜向进入的区域提升全内反射(TIR)效果5),从而增加信号。目前,这项技术被广泛应用于大多数基于BSI技术的CIS产品。
4) F值:决定光圈亮度的值。相机的F值越低,光圈开得就越大,进光量就越多,使相机能够在较暗的地方拍出明亮清晰的照片,同时减少图像噪点。
5) 全内反射(TIR):是指光由介质(包括水或玻璃)周围表面全部被反射回原介质内部的现象。当入射角大于临界角时,就会发生全反射现象。
图6. 传统的背照式(BSI)结构和作为附加像素分割结构的背侧深沟槽隔离(BDTI)工艺
彩色滤光片隔离结构彩色滤光片隔离结构是与BDTI结构并驾齐驱的另一种技术,是通过在滤色器之间插入物理屏障提高基于BSI的像素性能。由于在使用BSI结构之后,微透镜和光电二极管6)之间的距离无法再缩短,因此这种结构防止了由像素收缩引起的衍射。彩色滤光片隔离的代表性结构包括W型栅格和SK海力士专有的空气栅格(Air Grid)结构。与简单的光阻隔结构W型栅格不同的是,使用全内反射的空气栅格可以提高量子效率,因而有望成为新一代技术。
6) 光电二极管(PD):将CIS传感器接收到的光信号转换为电信号。
图7. W型栅格结构和空气栅格结构 3.总结
从前照式到背照式,看似只是内部器件顺序上的简单调整,其实更是工艺水平的革新。通过将像元置于金属层之上,意味着承载像元的基板要非常薄,约是前照式像元的1/100。依赖工艺的革新,背照式像元最终才得以实现(可以想见,背照式像元生产成本也相对较高) 。