群发光芯谈激光雷达产业链分析

2023-06-28

简述激光雷达的结构原理分类及特点?

激光雷达发射器先发射激光,经过物体( O b j e c t ObjectObject )反射后被 C M O S CMOSCMOS (一种图拆消像传感器,即图中 I m a g e r ImagerImager )捕捉,设捕捉点为 x 2 x_2x
2

。现过焦点 O OO 作一条虚线平行于入射光线,交 I m a g e r ImagerImager 于 x 1 x_1x
1

,由于 β \betaβ 已知,所以可得到 x 1 x_1x
1

的位置。记 x 1 , x 2 x_1,x_2x
1

,x
2

之间距离为 x xx,易得左右两个三角形相似,所以有:q f = s x \frac{q}{f}=\frac{s}{x}
f
q

=
x
s

,又有 s i n β = q d sin\beta=\frac{q}{d}sinβ=
d
q

,二者联立可得 d = s f x s i n β d=\frac{sf}{xsin\beta}d=
xsinβ
sf

.

这样就可得到物体到激光发射器的距离 d dd 了,激光雷达将这样的发射器和接收器组装在一起,经过机械旋转360°即可得到一周障碍物的距离。

TOF测距原理
由三角测距的计算公式不难发现,当距离 d dd 很大时,每变化 δ d \delta dδd 引起的 x xx 变化很小,导致精度下降,这就限制了测量范围。

而TOF(Time of flight)原理克服了测量距离这一难点,并且提高了精度:

TOF原理十分简单,就是利用光速测距。首先激光发射器发射激光脉冲,计时器记录发射时间;脉冲经物体反射后由接收器接受,计时器记录接受时间;时间差乘上光速即得到距离的两倍。

TOF原理看似简单,但是实现起来确有很多难点:

计时问题:由于光速过快,测量时间会变得很短。据网上数据得:1cm的测量距离对应芦清65ps的时间跨度。这需要计时器的精确度很高。
脉冲问题:发射器需要发射高质量的脉冲光,接收器接受脉冲光的时候需要尽量保持信号不失真。
对于同一距离的物体测距时,得到的回波信号可能不一样,如下图的黑白纸,这就需要特殊的处理方式来处理。

但总的来说TOF原理的精度远远超过三角测距,只是由于诸多难点导致成本略高。像大一立项时因为没钱,所以用的三角测距的思岚A1,精度不是很高。而ROBOCON战队里的sick激光雷达就是TOF原理,精度非常高,贵是有道理的~
雷达分类
机械激光雷达
机械激光雷达使用机械部件旋转来改变发射角度,这样导致体积过大,加工困难,且长时间使用电机损耗较大。但由于机械激光雷达是最早开始研发的,所以现在成本较低,大多数无人驾驶公司使用的都是机械激光雷达。

MEMS激光雷达
MEMS全称Micro-Electro-Mechanical System,是将原本激光雷达的机械结构通过微电子技术集成到硅基芯片上。本质上而言MEMS激光雷达是一种混合固态激光雷达,并没有做到完全取消机械结构。

主要原理为:通过MEMS把机械结构集成到体积较小的硅基芯片上,并且内部有可旋转的MEMS微振镜,通过微振镜改变单个发射器的发射角度,从而达到不用旋转外部结构就能扫描的效果。

大致原理如下图:

相控阵激光雷达
两列水波干涉时会出现某处高某处低的情形:

光学相控阵原理类似干涉,通过改变发射阵列中每个单元的相位差,合成特定方向的光束。经过这样的控制,光束便可对不同方向进行扫描。雷达精度可以做到毫米级,且顺应了未来激光雷达固态化、小型化以及低成本化的趋势,但难点在于如何把单位时间内测量的点云数据提高以及投入成本巨大等问题。

动态原理图如下:

FLASH激光雷达
FLASH激光雷达原理非常简单:在短时间内发射出一大片覆盖探测区域的激光,再以高度灵敏的接收器,来完成对环境周围图像的绘制。

激光雷达的数据
分成N份
分成M份
N线点云数据
1线点云数据
时间戳
1个点云数据
点云数量M
X方向偏移量
Y方向偏移量
Z方向偏移量
反射强度
激光雷达数据的处理顺序一般为:

数据预处理(坐标转换,去噪声)
聚类(根据点云距离或反射强度)
提陪御前取聚类后的特征,根据特征进行分类等后处理工作。
激光雷达数据的处理顺序一般为:

数据预处理(坐标转换,去噪声)
聚类(根据点云距离或反射强度)
提取聚类后的特征,根据特征进行分类等后处理工作。

激光雷达是什么

群发光芯谈激光雷达产业链分析 (https://ic.work/) 推荐 第1张

群发光芯谈激光雷达产业链分析 (https://ic.work/) 推荐 第2张

群发光芯谈激光雷达产业链分析 (https://ic.work/) 推荐 第3张

群发光芯谈激光雷达产业链分析 (https://ic.work/) 推荐 第4张

每天1个汽车知识

啊得光雷达自动驾驶相关

激光雷达 (Laser 360问答Radar) ,是以发射激光束探测目标的位置、速举乱度等特征量的雷达系统。其工作原理是向目标发射探测信号 (激光束) ,然后将接收到的从目标反射回来的信号 (目标回波) 望种宗与发射信号进行比较,作适当处理后,就态传同可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对飞机、导弹等目标进行探测、跟踪和识别。

汽车激光雷达关键功效于自动驾角力额领情协衡块凯随驶上

激光雷达在汽车上主田烟配印使长要是以多整车线束叫乙七什为主导,能够带来协助汽车认知路纳答迟面自然环境,自主整体规划行驶路线,并操控车子做到预订总误走卷质开容介推发班体目标的功效。

例如依据激光器碰到障碍物后的折回时间,测算总绍沙奏灯纸必攻呀答犯体目标与自身的比较间距,还可以协助车辆识别系统街口与方位。

激光雷达的优缺点

一、优点

1、分辨率高

激光雷达可以获得极高的角度分辨率、速度分辨率和距离分辨率,一般角度分辨率可洞李根消磁殖以达到分辨距离3负老构笑终蛋km距离以上,两个相距0.3米的物体密切可以同时跟踪多个目标;而速度分辨率则可以达到10m/s以内;距离分辨率则可达到0.1米左右。

2、抗干扰能力强

二、缺点

容易受不良天气影响。

混边持田介意技术尚未成熟。

怎样测量星系之间的距离

出了太阳系,可以用以下方法:(太阳系内可以用雷达波、激光反射等方法)
三角视差法
测量天体之间的距离可不是一件容易的事.天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=9.461012千米),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定他它们的视差了.
移动星团法
这时我们要用运动学的方法来测量距离,运动学的方法在天文学中也叫移动星团法,根据它们的运动速度来确定距离.不过在用运动学方法时还必须假定移动星团中所有的恒星是以相等和平行的速度在银河系中移动的.在银河系之外的天体,运动学的方法也不能测定它们与地球之间的距离.
造父视差法(标准烛光法)
物理学中有一个关于光度、亮度和距离关系的公式.S∝L0/r2
测量出天体的光度L0和亮度S,然后利用这个公式就知道天体的距离r.光度和亮度的含义是不一样的,亮度是指我们所看到的发光体有多亮,这是我们在地球上可直接测量的.光度是指发光物体本身的发光本领,关键是设法知道它就能得到距离.天文学家勒维特发现“造父变星”,它们的光变周期与光度之间存在着确定的关系.于是可以通过测量它的光变周期来定出广度,再求出距离.如果银河系外的星系中有颗造父变星,那么我们就可以知道这个星系与我们之间的距离了.那些连其中有没有造父变星都无法观测到的更遥远星系,当然要另外想办法.
三角视差法和造父视差法是最常用的两种测距方法,前一支的尺度是几百光年,后一支是几百万光年.在中间地带则使用统计方法和间接方法.最大的量天尺是哈勃定律方法,尺度达100亿光年数量级.
哈勃定律方法
1929年哈勃(Edwin Hubble)对河外星系的视向速度与距离的关系进行了研究.当时只有46个河外星系的视向速度可以利用,而其中仅有24个有推算出的距离,哈勃得出了视向速度与距离之间大致的线性正比关系.现代精确观测已证实这种线性正比关系
V = H0×d
其中v为退行速度,d为星系距离,H0=100h0km.s-1Mpc(h0的值为0

文章推荐

相关推荐