如何使用多功能 60GHz 雷达传感器设计汽车车内手势检测系统及更多

2023-07-03

如何用雷达实现手势识别

如何用雷达实现手势识别
雷达,英文Radar(Radio Detection And Ranging),利用发射“无线电磁波”得到反射波来探测目标物体的距离,角度,和瞬时速度。随着天线尺寸和芯片的极度缩小,在可预见的未来,更多的雷达设备将会以微型器件面世,如图所展示的那样,它们不仅能嵌入可穿戴设备,成为物联网的一类重要传感器。

图 传统的探测侦查雷达(左)以及Project Soli中用于手势识别的迷你雷达(右)
相比于其它隔空操作技术,比如体感相机、超声波等,雷达有着一些天然优势:比如无论白天黑夜,暴晒寒风,皆可正常工作;在体积、成本,以及功耗上都比Kinect等体感相机来得要更低;高频雷达测量物体距离通常可以精确到毫米级别;而低频雷达则可以做到“穿墙而过”,完全无视遮挡物的存在。这些特性让雷达,尤其是微型雷达,在未来都有着广阔的应用前景。
雷达的组成
一般雷达由发射器、接收器、发射/接收天线、信号处理单元,以及终端设备组成。发射器通过发射天线宏毁启将经过调频或调幅的电磁波发射出去;部分电磁波触碰物体后被反射回接收器,这就好比声音碰到墙壁被反射回来一样;信号处理单元分析接受到的信号并从中提取有用的信息诸如物体的距离、角度,以及行进速度;这些结果最终被实时地显示在终端设备上。传统的军事雷达还常配有机械控制的旋转装置用以调整天线余宴的朝向,而新型雷达则更多通过电子方式做调整。
为节省材料和空间,通常发射器和接收器可以共享同一个天线,方法是交替开关发射或蔽如接收器避免冲突。终端设备通常是一个可以显示物体位置的屏幕,但在迷你雷达的应用中更多是将雷达提取的物理信息作为输入信号传送给诸如手表或其它电子设备。信号处理单元才是雷达真正的创意和灵魂所在,主要利用数学物理分析以及计算机算法对雷达信号作过滤、筛选,并计算出物体的方位。在这基础之上,还可以利用前沿的机器学习算法对捕捉的信号作体感手势识别等等。
雷达实现手势识别
雷达的测距或者测速都把物体想像成一个抽象的点。而真实的物体如手掌则可以认为是一堆三维点的集合体。所以在反射波中已然蕴藏了许多个点的距离与速度信号。同时呈现这些信息的一个好方法叫做距离-多普勒映射(Range-Dopler Map),简称RDM(如图)。RDM中的横轴是速度,纵轴是距离。它可以认为是一张反射波的能量分布图或概率图,每一个单元的数值都代表了反射波从某个特定距离和特定速度的物体得到的反射波能量。仔细看的话,从RDM中已然可以窥见探测物体的特征身形!基于RDM及其时间序列, 我们可以采用机器学习的方法识别特定的能量模式变化,进而识别手势及动作。在Soli推出之前,Nvidia也做过类似的研究。

图 距离-多普勒(速度)映射的等高线表示示例 每一个单元值代表了反射波中具有对应距离和速度的点的集合的反射能量。该映射可以作为特征向量用于机器学习识别手势动作。

怎么利用红外传感器,使人接近物体一定距离而发出警告?类似自动门上的。。。

在消费电子产品中,接近感应作为一种探测用户身体或手部存在的方法,越来越为人们所接受。该技术也能够用于动作感应,如检测用户手势。用户手势作为一种输入,可以应用于许多设备,如手机、计算机和其他家用电子产品。
要理解动作感应系统设计的理论基础,需要了解红外线(IR)与可见光的差异,探讨接近和动作感应系统如何在单一LED 下运行,以及动作感应在使用多个LED 进行多接近测量时如何工作。

当我们谈及“光”时,通常指的是来自太阳或灯具的可见光,然而,可见光仅占光谱范围中的一小部分。我们把可见光定义为人眼可以识别的所有光线,通常人眼可以识别的光线波长为380-750nm。那么,人眼无法识别的非可见光(如波长为850 nm 光)又如何呢?

IR 辐射光的波长为750nm-1000μm,IR 光与可见光有着相同的特性,例如反射率,而且它可以通过特殊灯泡或发光二极管生成。因为人眼无法看到IR 光,所以我们可以用它来完成一些特殊的人机界面任务,例如接近检测,而无需用户与系统进行任何直接接触。

IR 接近传感系统能够检测附近物体的存在,并根据检测结果做出反应。IR 接近检测的应用无处不在。 例如,手机可以使用接近传感技术检测通话时手机是否接近面部。当你把手机靠近耳边时,手机将检测 到头的存在,从而自动关闭屏幕以节省电能。其他接近感应系统的例子包括皂液器和饮水机,你可以把 手放在传感器附近(通常在皂液管或水龙头附近),以“非接触”而又卫生的方式获取皂液或水。

在高端 汽车上,外部防碰撞系统也使用接近检测,当汽车与其他汽车或者物体太靠近时,接近检测会提醒司机 注意。有些车辆还可以使用车内接近感应系统检测乘客的存在,从而调整安全装置(如安全气囊)。 接近检测通过专门设计的IR LED 实现。与IR LED 相对应的是光电二极管,它一般用来检测LED 发出 的IR 光。当IR LED 和光电二极管同方向放置时,光电二极管将不会检测到任何IR 光,除非有物体在 LED 的前面,将光反射回光电二极管。反射回光电二极管的光强与物体到光电二极管的距离逆向相 关。

图 1:一维空间动作检测

单一 LED 和光电二极管相结合可以检测一些动作,例如可以检测物体是否靠近或远离光电二极管,这 仅仅是一维空间检测。假设一个系统,其布局如图1 所示,单一LED 系统仅使用LED1 与IR 传感器。 图2 是三个手势动作过程中Silicon Labs Si1120 传感器感应IR LED 后的输出值,其中Y 轴是反射的 IR 光强,X 轴是时间。三个手势包括沿图1 X 轴从左到右的滑动,沿Y 轴从底部到顶部的滑动,以及 沿Z 轴由远及近,然后由近及远的往复动作。图2 表明,单一LED 系统不能区分这些手势,使用单一 LED,系统只能检测到物体正在接近或远离传感器,而不能判别其方向。

图 2:单一LED 系统性能分析

二维空间检测由位于不同位置的两个LED 和单个光电二极管组成。从LED1 得到一个测量值,然后快 速从LED2 获得另一个测量值,两个测量值被用于计算二维空间上的物体位置。其中一维空间是接近 LED1(左)或接近LED2(右),而另一维空间是接近或远离光电二极管。图3 是与图2 相同的三个 手势,其中白线代表从LED1 中读出的数据,红线代表从LED2 读出的数据。从左到右滑动过程中,白 线上升,然后是红线。当手从左到右滑动时,LED1 反射IR 光到传感器,然后是LED2。图 3:二维空间中手势性能分析

三维空间动作检测由三个LED 和单个光电二极管组成。LED3 与LED1、LED2 不在同一直线上,如图 1 所示,可以把LED1 和LED2 之间的连线看作X 轴,LED1 和LED3 之间的连线看作Y 轴,从光电二 极管和LED 到被测物体之间的连线看作Z 轴。图4 显示了与图2 和图3 相同的测量过程,其中蓝线代 表LED3 的测量数据。当手从左向右滑动时,因为手在LED1 和LED3 上同时通过,LED1 和LED3 数 据线同时上升,然后是LED2 数据线。当手从底部向顶部滑动时,因为手先遇到来自LED3 的IR 光, LED3 数据线上升,然后是LED1 和LED2。当往复动作时,因为手在整个过程中都反射等量的LED 光,三个LED 测量值是相同的。图 4:加入LED3 后,三维空间中动作性能分析

当 IR LED 和IR 传感器应用于产品时,这些组件通常不会用作装饰目的而放在外面,终端产品至少需 要一个开口或透明窗口,让IR 光透过。

IR LED 从窗口中照射出,被外部物体反射后,通过窗口进入Si1120 传感器。单一窗口配置的主要缺点 是:窗口将导致一些光线被内反射到Si1120,即使在检测范围内没有外部物体时,大量反射光也可能 导致传感器输出。

双窗口设计使用其中一个窗口用于IR LED,另一个窗口用于传感器。通过在LED 和传感器之间进行适 当的隔离,设计消除了内部反射的问题,为系统提供更好的敏感性和检测范围。

对于 IR 接近感应系统设计而言,选择何种IR LED 是一项非常重要的决定。IR LED 视角对最大检测距 离和范围有很大影响。从LED 射出的IR 光形成一个圆锥状,圆锥顶角(大多数LED 能量从这里输 出)被称为LED 视角。图 5:窄视角和宽视角IR LED 的差异

所有的 LED 都有一个特定的视角,一个窄视角LED 意味着发出的能量更加集中,比宽视角LED 照射 的更远。这意味着使用窄视角IR LED 将在窄检测区域中形成更远的检测范围,图5 说明了窄视角和宽 视角IR LED 的差异。

当设计 IR 系统时,系统中被测物体的特点也是需要重点考虑的。除了用于检测手势,IR 接近感应系统 也能被用于检测无生命物体,如车库门(打开或关闭)。检测较大物体时,由于有更多的IR 光被反 射,检测距离将更远。物体的颜色是另一个需要考虑的因素,因为IR 光与可见光有相同特性,浅色物 体比深色物体反射更多光线。物体的颜色越深,越要接近IR 系统,因为仅有来自IR LED 的少量IR 光 被反射到IR 传感器。

在消费电子、工业和汽车领域应用中,许多电子系统从非接触式反射中受益。IR 接近感应为需要检测 物体存在的系统提供了一个最佳方法。接近感应也可用于检测最多三维空间内的动作,甚至是手势,使 得下一代电子产品的人机界面更先进、更直观。(主讲:Alan Pang,Silicon Labs 作者:Alan Sy,Silicon Labs)

文章推荐

相关推荐