温度传感器的概念/工作原理/作用/应用案例

2023-07-11

温度传感器的原理及应用

温度传感器的原理是利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号;应用于工业、电子产品、生物医学以及航天航空等领域。

温度传感器的概念/工作原理/作用/应用案例 (https://ic.work/) 推荐 第1张

温度传感器(temperature transducer)是指能感受温度并转换成可用输出信号的传感器。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。

温度传感器是最早开发,应用最广的一类传感器。温度传感器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。 

温度传感器是五花八门的各种传感器中最为常用的一种,现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为人们的生活提供了无数的便利和功能。

温度传感器的概念/工作原理/作用/应用案例 (https://ic.work/) 推荐 第2张

温度传感器的四种主要类型:

热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。

热电偶:

温度测量仪表中常用的测温元件,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。各种热电偶的外形常因需要而极不相同,但是它们的基本结构却大致相同,通常由热电极、绝缘套保护管和接线盒等主要部分组成,通常和显示仪表乎纤、记录仪表及电子调节器配套使用。

热敏电阻:

热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。正温度系数热敏电阻器(PTC)在温度越高时电阻值越大,负温度系数热敏电阻器(NTC)在温度越高时电阻值越低,它们同属于半导体器件。

电阻温度检测器(RTD):

电阻温度探测器(RTD)实际上是一根特殊的导线,它的电阻随温度变化而变化,通常RTD材料包岁渗仿括铜、铂、镍及铁合金。RTD元件可以是一根导线,也可以是一层薄膜,采用电镀或溅射的方法涂敷在陶瓷类材料基底上。

IC温度传感器:

温度IC是指温度传感的一种概念。温度是一个基本的物理量,自然界中的一切过程无不与温度密切相关。温度传感器是最早开发,应用最广的一类传感器。温度传感喊掘器的市场份额大大超过了其他的传感器。从17世纪初人们开始利用温度进行测量。在半导体技术的支持下,本世纪相继开发了半导体热电偶传感器、PN结温度传感器和集成温度传感器。

与之相应,根据波与物质的相互作用规律,相继开发了声学温度传感器、红外传感器和微波传感器。

温度传感器工作

温度传感器temperature
transducer

定义:利用物质各种物理性质随温度变化的规律把温度转换为可用输出信号。温度传感器是温度测量仪表的核心部分,品种繁多。按测量方式可分为接触式和非接触式两大类,按照传感器材料及电子元件特性分为热电阻和热电偶两类。现代的温度传感器外形非常得小,这样更加让它广泛应用在生产实践的各个领域中,也为我们的生活提供了无数的便利和功能。

分类:温度传感器有四种主要来自类型:热电偶、热敏电阻、电阻温度检测器(RTD)和IC温度传感器。IC温度传感器又包括模拟输出和数字输出两种类型。

工作原理:

1、温度传感器工作原理--热电偶

两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势码拆和温差360问答电势合成的。接触电势是指两种作委谁奏不同的导体或半导体在接触处产生的电势,此电势与信故井再福打棉敌两种导体或半导冲型体画说水念的性质及在接触点的温度有关。

当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点罪课思层两训小牛而若处的温度不同,一端温度为T,称为工作端或热端,历引自甲肥杂汽若另一端温度为TO,称为自由端,谁随被了给则回路中就有电流产生川象被最别承又,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。

2、温度传感器工作原理--红外温度传感器

在自然界中,当物体的温度高于绝对零度时,由于它内部热运动的存在,就会不断地向四周辐射电磁波,其中就包含了波段位于0.75~100μm
的红外线,红外温无均硫材帝快高入那度传感器就是利用这一原理制作而成的。

SMTIR9901/02是一款现在市场上应用比较广的红外传感器,它是基于热电堆的硅基红外传感器。大量的热电偶堆集在底层的硅基上,底层上的高温接点和低温接点通过一层极薄的薄膜隔离它们的热量,高温接点上面的黑色吸迟判枣收层将入射的放射线转化为热能,由热电效应可知,输出电压与放射线是成比例的,通前眼工常斗来难元承常热电堆是使用BiSb和NiCr作为热电偶。

3、温度传感器工作原理--模拟温度传感器

AD590是一款电流输出型温度传感器,供电电压修运真粉月范围为3~30V,输出电流223μA~423μA,灵敏度为1μA/℃。当在电路中串接采样电阻R时,R两端的电心稳余状衣时压可作为输出电压。R的阻值不能取得太大,以保证AD590两端电压不本再手培互低于3V。AD59争调频非田究括0输出电流信号传输距离可达到1km以上。作为一种高阻电流源,最高可达20MΩ,所以它不必考虑选择开关或C挥热MOS多路转换器所引入的附加电阻造成的误差。适用于多点温度测量和远距离温度测量的控制

.4、温度传感器工作原理--数字式温度传感器

它采用硅工艺生产的数字式温否效风苗本度传感器,其采用PTAT结构,这种半导体结构具有精确的,与温度相关的良好输出特性。PTAT的输出通过占空比比较器调制成数字信号,占空比与温度的关系如下式:DC=0.32+0.0047*t,t为摄氏度。输出数字信号故与微处理器MCU兼容,通过处理器的高频采样可算出输出电压方波信号的占空比,即可得到温度。该款温度传感器因其特殊工艺,分辨率优于0.005K。测量温度范围-45到130℃,故广泛被用于高精度场合。

请问什么是温度传感器原理?温度传感器原理的意义又是什么呢?

上次们在学习物理
课的时候,刚好老师有上过这个课程,
说个不错的知识,现在分享
给大家,以前没有听这个课的时候,也不知道它的含义是什么:现在们来解释下,友情提醒:有需要
几个地方
注意的是:什么是温度传感器的工作原理?温度传感器的原理大致有如下几类
一。热膨胀
1.金属热膨胀传感器
金属在环境温度变化后会产生一个相应的延伸,因此传感器可以以不同方式对这种反应进行信号转换。例子:双金属片式传感器
双金属片由两片不同膨胀系数的金属贴在一起而组成,随着温度变化,材料A比另外一种金属
膨胀程度要高,引起金属片弯曲。弯曲的曲率可以转换成一个输出信号。通常的表盘指针式的室内温度计也是用的这种原理。双金属杆和金属管传感器
随着温度升高,金属管(材料A)长度增加,而不膨胀钢杆(金属B)的长度并不增加,这样由于位置的改变,金属管的线性膨胀就可以进行传递。反过来,这种线性膨胀可以转换成一个输出信号。2.液体和气体的变形曲线设计的传感器
在温度变化时,液体和气体同样会相应产生体积的变化。多种类型的结构可以把这种膨胀的变化转换成位置的变化,这样产生位置的变化输出(电位计、感应偏差、挡流板等等)。二。热电阻
金属随着温度变化,其电阻值也发生变化。对于不同金属来说,温度每变化一度,电阻值变化是不同的,而电阻值又可以直接作为输出信号。三。热电偶
原理是热电效应。任何导体(金属)被施加热梯度时都会产生电压。现在这种现象被称为热电效应或“Seebeck效应”.若要测量这个电压,必须把“热”端连到另一导体上。增加的导体也会经历热梯度,自身也会产生一个电压,并与原来的电压抵消。幸运的是,热电效应中电压的大小取决于金属的种类。在电路中使用不同的金属会产生不同的电压,这个电压被称为热电势,因此存在一个很小的电压差值可以被测量,这个差值随温度的升高而增大。对于目前常用的金属组合,这个差值通常在1到大约70微伏每摄氏度之间。热电偶由两个不同材料的金属线组成,在末端焊接在一起。再测出不加热部位的环境温度,就可以准确知道加热点的温度。由于它必须有两种不同材质的导体,所以称之为热电偶。不同材质做出的热电偶使用于不同的温度范围,它们的灵敏度也各不相同。热电偶的灵敏度是指加热点温度变化1℃时,输出电位差的变化量。由于热电偶温度传感器的灵敏度与材料的粗细无关,用非常细的材料也能够做成温度传感器。也由于制作热电偶的金属材料具有很好的延展性,这种细微的测温元件有极高的响应速度,可以测量快速变化的过程。一般实验室里用来控温的主要是热电偶。四。热辐射
最常用的非接触式测温仪表基于黑体辐射的基本定律,称为辐射测温仪表。温度传感器辐射测温法包括亮度法(见光学高温计)、辐射法(见辐射高温计)和比色法(见比色温度计)。各类辐射测温方法只能测出对应的光度温度、辐射温度或比色温度。只有对黑体(吸收全部辐射并不反射光的物体)所测温度才是真实温度。如欲测定物体的真实温度,则必须进行材料表面发射率的修正。而材料表面发射率不仅取决于温度和波长,而且还与表面状态、涂膜和微观组织等有关,因此很难精确测量。这一类工业上主要用来测控高温物体,例如锅炉。也用来在医院门口或者机场火车站用来测来来往往的人的体温。

文章推荐

相关推荐