毫米波雷达的工作原理,与红外线相比有什么优势呢?
毫米波雷达与光学雷达、红外线相比不受目标物体形状颜色的干扰,与超声波相比不受大气紊流的影响,因而具有稳定的探测性能,环境适应性好。
受天气和外界环境的变化的影响小,雨雪,灰尘,阳光都对其没有干扰;多普勒频移大,测量相对速度的精度提高。
雷达为利用无线电回波以探测目标方向和距离的一种装置,利用无线电探向与测距。毫米波,是工作在毫米波波段,波长在1 10mm之间的电磁波。毫米波的波长介于微波和厘米波之间,因此毫米波雷达兼有微波雷达和光电雷达的优点。
毫米波雷达具有体积小、质量轻和空间分辨率高的特点。与红外、激光、电视等光学雷达相比,飞睿 科技 毫米波雷达穿透雾、烟、灰尘的能力强,具有全天候全天时的特点。
毫米波和大多数微波雷达一激旦样,有波束的概念,也就是发射出去的电磁波是一个锥状的波束,而不像激光是一条线。这是因为这个波段的天线,主要以电磁辐射,而不是光粒子发射为主要方法。毫米波雷达可以对目标进行有无检测、测距、测速以及方位测量。
毫米波雷达基于多普勒效应原理。当发射的电磁波和被探测目标有相对移动、回波的频率会和发射波的频率不同。当目标向雷达天线靠近时,反射信号频率将高于发射机频率;反之,当目标远离天线而去时,反射信号频率将低于发射几率。
多普勒效应所形成的频率变化就被称作多普勒频移,它与相对速度V成正比,与振动的频率成反比。如此,通过检测这个频率差,可以测得目标相对于雷达的移动速度,也就是目标与雷达的相对速度。
根据发射脉冲和接收的时间差,可以测出目标的距离。同时用频率过滤方法检测目标的多普勒频率谱线,滤雀吵除干扰杂波的谱线,可使雷达从强杂波中分辨出目标信号。所以脉冲多普勒雷达比普通雷达的抗杂波干扰能力强,能探测出隐蔽在背景中的活动目标。
毫米波雷达有24GHz,77GHz等不同频率,其中24GHz毫米波雷达一般被安装在车侧方和后方,用于盲点检测,辅助停车系统等。
雷达的工作体制主要分为脉冲方式和连续波方式。连续波(CW)雷达是指发射连续波信号,主要用来测量目标的速度。
同时测量目标的距离,则需要对发射信号进行调制,例如对连续波的正弦波信号进行周期性的频率调制。而脉冲雷达发射的波形是矩形脉冲,按一定的或者交错的重复周期工作。
CW雷达传感器,应用多普勒效应原理,测量得出不同距离目标的的速度。它向给定的目标发射微波信号,然后分析反射回来的信号的频率变化,发射频率和反射回来的频率的差异,可以精确测量出目标相对于雷达的运动速度等信息。
FMCW雷达传感器,发射波为调频连续波,其频率随时间按照三角波规律变化。雷达接收的回波的频率与发射的频率变化规律相同,都是三角波规律,只是有一个时间差,利用这个微小的时间差可计算出目标距离。
随着当今世界微波固态器件的发展,利用连续波雷达能使雷达更为简单,其原因在于连续波雷达的发射机无需高压,并且调制信号可以多样化,这在相同体积和重量下有利于发射机的提高。
连续波雷达可以做到体积小、重量轻、发射机容易实现而且馈线损耗也较低。市场需求能够促进技术发展,飞睿 科技 毫米波雷达逐渐走进安防领域。随着技术的进步,器件成本的下降,毫米波雷达用于安防已不是问题。
利用窄脉冲或宽带调频信号获取目标的详细结构特征;毫米波雷达工作,容易克服相互干扰;距离分辨率高,易于获得准确的目标跟踪和识别能力。
多普勒频率高,对慢速目标和振动目标具有良好的明岁扰检测识别能力;易于使用目标多普勒频率特性进行目标特征识别。
新型毫米波安防雷达采FMCW技术,实现了对监测区内空间无任何间断全程覆盖,具有体积小、重量轻、可靠性高以及距离盲区小、无速度盲点、高距离分辨力、良好的抗干扰性能等优点。
与红外对射系统相比,安防雷达提供的是一个具有一定高度和厚度的连续的毫米波雷达墙,没有钻越和跳越的可能。安防雷达不仅能对侵入目标进行定位,而且可以获取监控场景内移动物体的速度、方向、距离、角度信息, 24小时无间隙监测。
同时可与具有同步变焦激光补光灯的高速球型摄像机配合,可以实现目标跟踪,不仅可定位入侵点位,且能够获得很好的图像信息,便于安保人员做出快速响应,从而避免事故发生。
汽车自适应巡航是什么毫米波雷达
【太平洋汽车网】汽车自适应巡航是波长介于1-1花花措宽斯木愿苏0mm的毫米波雷达,毫米波雷达是自动驾驶汽车上另外一种常见的传感器。毫米波雷达的工作原理是利用高频电路产生特定调制频率(FMCW)的电磁波,并通过天线发送电磁波和接收从目标发射回来的电磁波,通过发送和接收电磁波的参数来计算目标的各个参数。
毫米360问答波雷达的工作原理是利用钢身足察高频电路产生特定调制频率(FMCW)的电磁波,并通过天线发送电磁波和接收从目标发射回来的电磁波,通过发送和接收电磁波的参数来计算目标的各个参数。
毫米波雷达可以同时对多个目标进行测距、测速以及方位测量。
其中距离分辨率可达0.1m,测速是根据多普勒效应,而方位测量(包括水平角度和垂直角度)是通过天线的阵列方式来实现。
雷达网络的构沙历成原理所示的雷达网络由四个等距来星存绍响信离分布在安全杠上的近距离毫米波雷达传感器(Neardistancesensor,NDS)构成,每个雷达传感器均采用F升另费田算么良程静MCW体制。该传感器网络可在35米的范围内实现水平方位角为120°的覆盖面。这种近距离、大委几庆和继覆盖面的雷达传感器网络可以在车速不高,路面状况定了诉解井建医比较复杂的情况下(例如市内交通),监控汽车前向较大范围内的目标。
准项(图/文/摄:太平洋汽车网问答叫兽)
介绍下当今的机载雷达
展开全部
基本上所有种类的雷达在战斗机上都可以找到
(1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。
(2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。
(3)按辐射种类可分为:脉冲雷达和连续波雷达。
(4)按工作波长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段雷达。
(5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。
相控阵雷达是一种新型的有源电扫阵列多功能雷达。它不但具有传统雷达的功能,而且具有其它射频功能。有源电扫阵列的最重要的特点是能直接向空中辐射和接收射频能量。
但是上面的各种雷达虽然具体用途和结构不尽相同,但基本形式是一致的
雷达还是靠波长来区分的,我说一下各个波长雷达的优缺点:
超长波雷达
超长波雷达由于其波长长、信号衰减小、传播距离长、定位精度不高等特点,一般用于战略警戒。比如对洲际或中程战略导弹的预警。这种雷达是冷战时期发展比较快的一种雷达。
长波(米波)雷达
长波(米波)雷达一般用于战役级空中警戒和空战引导。该类雷达集中了微波雷达和长波雷达的部分优点,具有较大的作用距离和较高的定位精度,能够满足战役级对空警戒和引导要求。
米波雷达还有一个鲜为人知的特点,就是对类似美国隐形飞机很有效。这与隐形飞机的设计思想有关。隐形飞机一般是通过吸收雷达电波、减少雷达角反射面、散射雷达电波来达到隐形目的。但波长适当的雷达恰恰具备电波被吸收率低、不易散射等特点。所以,米波雷达对隐形飞机来说还是很有效的。
毫米波雷达
通常毫米波是指30~300GHz频域(波长为1~10mm)的电磁波。毫米波的波长介于厘米波和光波之间,因此毫米波雷达制导兼有微波制导和光电制导的优点。同厘米波导引头相比,毫米波导引头具有体积小、质量轻和空间分辨率高的特点。与红外、激光、电视等光学导引头相比,毫米波导引头穿透雾、烟、灰尘的能力强,具有全天候(大雨天除外)全天时的特点。另外,毫米波导引头的抗干扰、反隐身能力也优于其他微波导引头。近几年,随着计算机技术、毫米波固态技术、信号处理技术、光电子技术以及材料、器件、结构、工艺的发展,固体共形相控阵天线和毫米波集成电路技术等相关技术的成功应用为毫米波导引头性能的提高打下了良好的基础。
毫米波导引头的关键技术之一是天线技术。常用的毫米波雷达天线有以下几种:反射面天线、透镜天线、喇叭天线、介质天线、漏波天线、微带天线、相控阵列天线等。
那要看按照什么条件分类
按照雷达采用的技术和信号处理的方式有:脉冲多普勒雷达、合成孔径雷达、边扫描边跟踪雷达。
按照天线扫描方式分类,分为机械扫描雷达、相控阵雷达等。
其中相控阵雷达按功能还分为:有源相控阵雷达和无源相控阵雷达
按照结构还分为:全电扫相控阵和有限电扫相控阵。
脉冲多普勒雷达:如美国现役F-14、F-15、F/A-18和F-16等战斗机分别装备的AWG-9、APG-63、APG-65和APG-66A/B、APG-68C/D等雷达。(优点)窄带滤波器能对回波脉冲列进行相干积累 ,由它选出目标的多普勒谱线。脉冲多普勒雷达的这种信号处理方式可获得近于最佳的信号功率对杂波加噪声功率之比,及较精确的目标距离和径向速度数据。(缺点)脉冲多普勒雷达采用足够高的脉冲重复频率(通常在20千赫以上),但因此而带来了雷达测量目标距离的最大量程很近,远距离的目标回波跨周期的出现,使目标的距离产生模糊。此外,高的脉冲重复频率使不同距离上的杂波叠加,杂波强度大大增加,增大了抑制杂波的难度,因而对雷达的性能提出了更高的要求。
合成孔径雷达:特点是分辨率高,能全天候工作,能有效地识别伪装和穿透掩盖物。缺点是覆盖范围小,扫描周期长。
边扫描边跟踪雷达:以F-14的AWG-9为例,它能同时跟踪24个分散的目标。将六枚“不死鸟”导弹在时间分隔的基础上几乎同时(2秒内)导向六个分散的目标。此类雷达还未发现缺点。
机械扫描雷达:当今绝大多数战机的配备,从雷达诞生之日起到现在。(缺点)约为整套机械雷达系统造价一半的机械设备最容易发生各种故障,占雷达系统故障的绝大部分,每天都要进行维护。另外,机械设备几乎限制了雷达系统的所有基本性能,包括探测线、被跟踪目标的截获、对抗各种类型干扰的防护性能、通信容量等。
相控阵雷达:正在异军突起的雷达种类,优点很多。
(1)波束指向灵活,能实现无惯性快速扫描,数据率高;
(2)一个雷达可同时形成多个独立波束,分别实现搜索、识别、跟踪、制导、无源探测等多种功能;
(3)目标容量大,可在空域内同时监视、跟踪数百个目标;
(4)对复杂目标环境的适应能力强;
(5)抗干扰性能好。全固态相控阵雷达的可靠性高,即使少量组件失效仍能正常工作。
缺点也有:相控阵雷达设备复杂、造价昂贵,且波束扫描范围有限,最大扫描角为90°~120°。当需要进行全方位监视时,需配置3~4个天线阵面。
有源相控阵雷达的每个辐射器都配装有一个发射/接收组件,每一个组件都能自己产生、接收电磁波,因此在频宽、信号处理和冗度设计上都比无源相控阵雷达具有较大的优势。正因为如此,也使得有源相控阵雷达的造价昂贵,工程化难度加大。但有源相控阵雷达在功能上有独特优点,大有取代无源相控阵雷达的趋势。
有源和无源相控阵雷达的天线阵相同,二者的主要区别在于发射/接收元素的多少。
有源相控阵雷达最大的难点在于发射/接收组件的制造上,相对来说,无源相控阵雷达的技术难度要小得多。无源相控阵雷达在功率、效率、波束控制及可靠性等方面不如有源相控阵雷达,但是在功能上却明显优于普通机械扫描雷达,不失为一种较好的折中方案。因此在研制出实用的有源相控阵雷达之前,完全可以采用无源相控阵雷达作为过渡产品。而且,即使有源相控阵雷达研制成功以后,无源相控阵雷达作为相控阵雷达家族的一种低端产品,仍具有很大的实用价值。
全电扫相控阵和有限电扫相控阵:全电扫相控阵又可称固定式相控阵,即在方位上和仰角上都采用电扫,天线阵是固定不动的。有限电扫相控阵是一种混合设计的天线,即把两种以上天线技术结合起来,以获得所需要的效果,起初把相扫技术与反射面天线技术相结合,其电扫角度小,只需少量的辐射单元,因此可大大降低设备造价和复杂程度。
现在的雷达都趋向于多功能化,往往一台雷达继承了多个类别的雷达特性,因此“雷达种类”变成了“雷达功能”。
望采纳!!