气体传感器加入到锂离电池热失控检测报警应用的案例分析

2023-07-11

高比能锂电池热失控机理研究取得了哪些新进展?

在碳达峰和碳中和背景下,加速动力系统电动化成为新能源汽车发展的必然趋势。
随着能量密度的提升日益凸显,作为新能源汽车动力系统的关键技术,锂电池的安全隐患自燃、爆炸等电池热失控现象频频发生,热失控事故已成为制约锂离子电池进一步推广与规模化应用的瓶颈问题。提高电池安全性也成为新能源产业健康持久发展的先决条件。
揭示电池热失控机理和开发高安全性电池体系成为当前电池领域亟需解决的关键课题。中科院青岛生物能源与过程研究所固态能源系统技术中心一直深耕于构建高比能、高安全性锂电池体系,取得了突破性进展。3月14日,相关研究成果在线发表在《焦耳》上。
对于电池失控的研究分析,追根溯源,首先要了解其失控的引发反应。通过滴定-质谱联用手段,固态能源系统技术中心证明了锂金属负极氢化锂(LiH)的存在,并且定量镇扒分析出LiH的积累量与实际锂金属电池的可循环性呈负相关,揭示了锂金属电池失效的关键机理。
同时,在充分总结电池材料热稳定性及其热特性基础上,科研人员提出,电池材料(电极材料/电解质/添御态昌加剂等)之间的热兼容性对电池安全性至关重要,单纯提高某一组分的热稳定性并无法确保电池整体安全性能的提升。鉴于此,该团队通过原位/非原位耦合手段对三元高镍电池(NCM523)失效机理进行了材料-电池层级的探索,开创性地在NCM三元电池负极侧发现H-离子的存在,且证实了该组分与电解液具有较差的热兼容性,成为诱导电池升温过程中链式放热反应的主要触因。
此外,通过自主设计的原位检测电池材料热失控气体穿梭测试装置及方法,证明了石墨负极侧产生的H2可穿梭至正极侧,从而加速剧烈放热行为,成为引发电池热失控的关键触因。
近年来,续航里程的焦虑也对锂电池的能量密度提出了更高要求,而传统锂离子电池的理论能量密度正接近其极限(350 Wh/kg)。相比于石墨负极,金属锂具有极低的电极电位和极高的理论比容量,被认为是下一代高能量密度电池的有力竞争者。金属锂负极搭配硫正极的锂硫(Li-S)电池因其超高的理论能量密度(2500 Wh/kg)而成为最具吸引力的电池体系之一,极具商业潜力。不过其热安全评估的研究步伐却明显滞后。固态能源系统中心科研人员系统地研究了Li-S软包中电解质/电极的热兼容性、多硫化物穿梭对电池热安全的影响以及电解质的分解路线,揭闭型示了Li-S电池的放热链式反应最初是由硫正极衍生物与电解液溶剂反应引发,然后由锂金属负极与电解液以及熔融硫的反应加速。

(2014?攀枝花模拟)气体的自动化检测中常常应用原电池原理的传感器.如图为电池的工作示意图:气体扩散

A.失电子发生氧化反应的电极是负极、得电子发生还原反应的电极是正极,根据待测气体和反应产物可知,部分气体中元素化合价上升,部分气体中元素的化合价下降,所以敏感电极不一定都做电池正极,故A错误;
B.检测氯气时,氯气得电子生成氯离子,电极反应式为Cl2+2e-═2Cl-,故B正确;
C.检测硫化氢时,硫化氢生成硫酸,硫元素化合价由-2价变为+6价而发生氧化反应,则其所在电极为负极,正极上氧气得电子和氢离子反应生成水,电极电极反应式为O2+4H++4e-═2H2O,故C错误;
D.产生的电流大小与失电子多少有关,检测H2S和CO体积分数相同的两份空气样本时,硫化氢失去电子数大于CO,所以产生电流大小不同,故D错误;
故选B.

文章推荐

相关推荐