1. 什么是限流?
限流,也叫速率限制(Rate
Limiting),是一种限制请求速率的技术。通常用于保护服务自身,或在下游服务已知无法保护自身的情况下,保护下游服务。
2. 为什么要限流?
服务需要保护自己,以免被太多的请求淹没(无论是恶意或无意的),从而保持可用性。
举个生活中的例子,某个景区,平时可能根本没什么人前往,但是一旦到了国庆假日就人满为患,这时景区管理人员就会实施一系列的限流举措,来限制进入的人流量。为什么要这么做呢?假设景区能容纳
1 万人,现在进去了 3
万人,势必摩肩接踵,搞不好还会有踩踏事故发生。这样的结果就是所有人的体验都不好,如果发生了事故,景区可能还要关闭,导致对外不可用。
互联网场景中,这样的例子也随处可见。比如秒杀抢购,通过限流来限制并发和请求量,从而保护自身或下游系统不被巨型流量冲垮。
限流算法大致有:服务限流、单机限流和分布式限流。
没有哪种算法是最好的或者是最差的,具体要根据实际业务场景决定使用哪种实现方式,本质都是提高功能的性价比,利用尽可能小的开发成本,产生尽可能大的收益。今天主要介绍的是目前比较常见的限流算法:
固定窗口(计算器法)
滑动窗口
漏桶算法
令牌桶算法
一、固定窗口算法(计算器算法)
计数器算法是使用计数器在周期内累加访问次数,当达到设定的限流值时,触发限流策略。下一个周期开始时,进行清零,重新计数。
此算法在单机还是分布式环境下实现都非常简单,使用redis的incr原子自增性和线程安全即可轻松实现。
这个算法通常用于QPS限流和统计总访问量,对于秒级以上的时间周期来说,会存在一个非常严重的问题,那就是临界问题,如下图:
假设1min内服务器的负载能力为100,因此一个周期的访问量限制在100,然而在第一个周期的最后5秒和下一个周期的开始5秒时间段内,分别涌入100的访问量,虽然没有超过每个周期的限制量,但是整体上10秒内已达到200的访问量,已远远超过服务器的负载能力,由此可见,计数器算法方式限流对于周期比较长的限流,存在很大的弊端。
二、滑动窗口算法
滑动窗口算法是将时间周期分为N个小周期,分别记录每个小周期内访问次数,并且根据时间滑动删除过期的小周期。
如下图,假设时间周期为1min,将1min再分为2个小周期,统计每个小周期的访问数量,则可以看到,第一个时间周期内,访问数量为75,第二个时间周期内,访问数量为100,超过100的访问则被限流掉了
由此可见,当滑动窗口的格子划分地越多,那么滑动窗口的滚动就越平滑,限流的统计就会越精确。
此算法可以很好地解决固定窗口算法的临界问题。
三、漏桶算法
漏桶算法是访问请求到达时直接放入漏桶,如当前容量已达到上限(限流值),则进行丢弃(触发限流策略)。漏桶以固定的速率进行释放访问请求(即请求通过),直到漏桶为空。
四、令牌桶算法
令牌桶算法是程序以r(r=时间周期/限流值)的速度向令牌桶中增加令牌,直到令牌桶满,请求到达时向令牌桶请求令牌,如获取到令牌则通过请求,否则触发限流策略。
总结:
所有的请求在处理之前都需要拿到一个可用的令牌才会被处理;
根据限流大小,设置按照一定的速率往桶里添加令牌;
桶设置最大的放置令牌限制,当桶满时、新添加的令牌就被丢弃或者拒绝;
请求达到后首先要获取令牌桶中的令牌,拿着令牌才可以进行其他的业务逻辑,处理完业务逻辑之后,将令牌直接删除;
令牌桶有最低限额,当桶中的令牌达到最低限额的时候,请求处理完之后将不会删除令牌,以此保证足够的限流。