高温IC设计学习笔记之环境温度和结温

2025-04-21

随着技术的飞速发展,商业、工业、军事及汽车等领域对耐高温集成电路(IC)的需求持续攀升‌。高温环境会严重制约集成电路的性能、可靠性和安全性,亟需通过创新技术手段攻克相关技术难题‌。

这份白皮书致力于探讨高温对集成电路的影响,并提供适用于高功率的设计技术以应对这些挑战。通过深入分析高温产生的根源,我们旨在缓解其引发的问题,从而增强集成电路在极端条件下的稳健性并延长使用寿命,同时优化整体解决方案的成本。安森美(onsemi)的 Treo 平台提供了全面的产品开发生态系统,专为支持高温运行而设计。本文为第一篇,将重点介绍介绍工作温度,包括环境温度和结温等。

环境温度

IC 及所有电子设备的一个关键参数是其能够可靠工作的温度范围。具体的工作温度范围是根据其应用和行业来定义的(图 1a)。

例如,对于汽车 IC 而言,温度范围取决于电子元件的安装位置。如果位于乘员舱内,温度范围最高可达 85°C。如果位于底盘或发动机舱内,但不直接位于发动机上,则温度范围最高可达 125°C。靠近或直接位于发动机或变速箱附近,温度范围可达 150°C 或 160°C。在靠近刹车或液压系统的底盘区域,温度最高可达 175℃。这些对高温的要求适用于内燃机汽车,同时也适用于混动和全电动汽车。

当汽车发动机运行时,主动冷却系统会有效控制温度。然而,在最极端的情况下,如车辆行驶后停放在酷热环境中,此时主动冷却系统停止工作,发动机及其它部件的热量逐渐扩散,导致电子设备温度上升。即便如此,当汽车再次启动时,所有系统仍需在温度升高的条件下保持正常工作。

对于适中的温度条件,可以定义 IC 在静态工作温度下的预期使用寿命。例如,在 125°C 的条件下可以连续工作 10 年。然而,对于像 175°C 这样的高温,使用 bulk CMOS 工艺实际上是不能实现的。通常,IC 不需要在其整个生命周期内都以最高温度运行。在汽车行业,常采用热曲线图来替代固定的静态温度规范,将整个使用寿命划分为不同的工作模式和温度区间(段),只有一小部分时间需要在极高温度下工作(图 1b)。

高温IC设计学习笔记之环境温度和结温 (https://ic.work/) 技术资料 第1张

图 1. 不同应用的温度范围及温度曲线示例

将电子元件布置在更靠近应用的高温区域,通过减少噪音和干扰可以提高传感器的精度和分辨率。对于大功率应用,尽量减少大电流开关回路可减少干扰。采用局部闭环控制系统可减轻重量并提高性能。然而,缩小模块尺寸会因功率密度提高和散热问题而增加电子元件的温度。

结温

IC 工作时会有功耗,导致 IC 内部的实际半导体结温高于环境温度。温度的升高取决于 IC 内部耗散的功率以及裸片与环境之间的热阻。这种热阻取决于封装类型、PCB、散热片等(见图 2)。

高温IC设计学习笔记之环境温度和结温 (https://ic.work/) 技术资料 第2张

图 2. 结温升高

对于功率开关、功率驱动器、DC-DC 转换器、具有高压降的线性稳压器(例如,在使用 DC-DC 转换器不经济的情况下,用于汽车电池驱动模块)或传感器执行器来说,裸片高功耗是不可避免的。

热阻取决于封装类型和热管理方式(图 3)。对于常用的小型封装,结到外部环境的热阻大约为 50-90K/W(SOIC 封装),以及大约 30-60K/W(QFP 封装)。在某些应用中,结至环境的热阻可达每瓦数百开尔文。

高温IC设计学习笔记之环境温度和结温 (https://ic.work/) 技术资料 第3张

图3. 不同封装类型IC散热示例

结温在 IC 的整个裸片上并不是均匀一致的。可能存在如功率驱动器等高功耗区。具有高功率驱动器的 IC 裸片温度图示例见图 4。

高温IC设计学习笔记之环境温度和结温 (https://ic.work/) 技术资料 第4张

图 4. IC热分布图示例

未完待续,后续推文将介绍高结温带来的挑战、IC的高温设计、高温设计的优势等。

文章推荐

相关推荐